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Abstract
We present a generalization of the Dirac structure in the direction of the Nambu–
Poisson structure. It is shown that with every integrable Nambu–Dirac structure
there is associated a Leibniz algebroid, which yields a singular foliation
endowed with a closed form. The examples of Nambu–Dirac manifolds are
Dirac manifolds, Nambu–Poisson manifolds and manifolds with closed forms.
A different Leibniz algebroid structure associated with a Nambu–Poisson
structure is adopted for this generalization.

PACS numbers: 02.40.Ma, 45.20.Jj

Mathematics Subject Classification: 53C15, 70H45

1. Introduction

A Dirac structure is the notion introduced by Courant and Weinstein [4] and studied by
Courant [2], in order to give a unified description of the geometry based on Hamiltonian
vector fields. The name ‘Dirac’ derives from the fact that it is a generalization of the Dirac
bracket discovered by Dirac in his theory of constraints, which is an induced Poisson bracket on
a second-class constrained submanifold of a phase space endowed with a singular Lagrangian
function. A Dirac structure on a manifold P is defined as a subbundle of T P ⊕ T ∗P which
is maximally isotropic with respect to the bilinear form 〈(X, ω), (Y, µ)〉+ = 1

2 (ω(Y ) + µ(X))

and whose sections are closed under the skew-symmetric bracket

[(X, ω), (Y, µ)] = ( [X, Y ], LXµ − LYω + d(ω(Y ))).

The basic examples of Dirac manifolds are Poisson manifolds and presymplectic manifolds
(i.e. manifolds endowed with closed two-forms). With the above bracket, a Dirac structure
is naturally a Lie algebroid, whose anchor map is the projection to the first component. As a
result, it gives a singular foliation of P (in the sense of Stefan and Sussman). Each leaf of the
foliation has a induced presymplectic form. On a Poisson manifold, the induced foliation and
form is just the leafwise symplectic foliation, and the Lie algebroid structure is isomorphic to
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that on the cotangent bundle induced from the Poisson structure. It has been shown that the
level surface Q = J−1(µ) of an equivariant momentum map J on a Poisson manifold P has
a Dirac structure whose leaves are the intersection of Q with leaves of P .

The Nambu–Poisson structure was introduced by Takhtajan [18] to formalize the bracket
proposed by Nambu [16] and was investigated by many authors [6,8,14,15]. A Nambu–Poisson
manifold of order p is a manifold endowed with a p-vector fields satisfying

LXf1 ...fp−1
� = 0

where Xf1,...,fp−1 = �(df1, . . . , dfp−1) is a Hamiltonian vector field for functions
f1, . . . , fp−1. An equivalent condition is given for all (p − 1)-forms in section 2. The
Poisson structure is considered as the Nambu–Poisson structure of order 2. Recently, in [10]
the authors proved that the bundle of (p − 1)-forms on a Nambu–Poisson manifold (P,�)

has an induced Leibniz algebroid structure, a non-commutative variation of the Lie algebroid,
with an anchor map � :

∧p−1
T ∗P → T P and the bracket

[[α, β]] = L�(α)β + (−1)p (�(dα)) β;
the notion of Leibniz algebra was introduced by Loday [13] as a vector space endowed with a
bilinear bracket satisfying the Leibniz identity

[[a1, [[a2, a3]]]] = [[[[a1, a2]], a3]] + [[a2, [[a1, a3]]]].

A Leibniz algebroid is defined as a vector bundle with certain additional conditions as in the
case of a Lie algebroid. Although this formally corresponds to the fact that the cotangent bundle
of a Poisson manifold has a Lie algebroid structure, it does not holds generally for p = 2.

In this paper, we extend the Dirac structure to higher order for a unified description of
the geometry based on a Leibniz algebroid, and elucidate its geometrical properties. The
key to extension is an alternative Leibniz algebroid structure on the bundle of (p − 1)-forms
on a Nambu–Poisson manifold, to which we refer through the Nambu–Dirac framework in
section 4. A Nambu–Dirac structure of order p is defined as a subbundle of T P ⊕∧p−1

T ∗P
which satisfies some isotropy and integrability which agrees the definition of Dirac structure
for p = 2. It is shown that a Nambu–Dirac structure of order p forms a Leibniz algebroid and
yields a singular foliation endowed with a closed p-form. On a certain kind of Nambu–Dirac
manifold, functions transversal to the kernel of this form have a Nambu–Poisson bracket.
Considering that the Dirac structure has been dealt with in papers [3, 5, 11, 12], it would be
interesting to investigate the Nambu–Dirac structure further.

2. Preliminaries

First, we review Nambu–Poisson manifolds, Leibniz algebroids and Dirac manifolds. We also
give an equivalent definition of Nambu–Poisson structure which is applicable to all forms, not
only exterior products of exact 1-forms.

2.1. Nambu–Poisson manifolds

Let P be an n-dimensional smooth manifold. A Nambu–Poisson bracket of order p (p � n)

on P is a p-linear skew-symmetric map { . . . } : C∞(P )×· · ·×C∞(P ) → C∞(P ) satisfying

(i) (Leibniz rule)

{f1, . . . , fp−1, g1g2} = {f1, . . . , fp−1, g1}g2 + g1{f1, . . . , fp−1, g2}



Nambu–Dirac manifolds 1265

(ii) (Fundamental identity)

{f1, . . . , fp−1, {g1, . . . , gp}} =
p∑
i=1

{g1, . . . , {f1, . . . , fp−1, gi}, . . . , gp}

for f1, . . . , fp−1, g1, . . . , gp ∈ C∞(P ).
It follows that a Nambu–Poisson bracket { . . . } is equivalently defined by a p-vector �

satisfying

LXf1 ...fp−1
� = 0 (1)

where �(df1, . . . , dfp) = {f1, . . . , fp} for f1, . . . , fp ∈ C∞(P ). The pair (P,�) is called
a Nambu–Poisson manifold of order p, and � is called a Nambu–Poisson structure on P .
Poisson manifolds are just Nambu–Poisson manifolds of order 2.

A point x of a Nambu–Poisson manifold (P,�) is said to be regular if �(x) �= 0. The
following theorem states that a Nambu–Poisson structure of order p � 3 is isomorphic to the
standard structure locally around a regular point.

Theorem 2.1 ([6, 8, 15]). Let P be an n-dimensional smooth manifold and � a p-vector,
p � 3. Then � defines a Nambu–Poisson structure on P if and only if for any regular point
x ∈ P , there exists a system of local coordinates (x1, . . . , xn) such that

� = ∂

∂x1
∧ · · · ∧ ∂

∂xp
.

On a Nambu–Poisson manifold (P,�) of order p � 3, the characteristic distribution D
given by D(x) = �(

∧p−1
T ∗
x P ) is completely integrable, thus it defines a singular foliation

in the sense of Sussmann [17]. At a regular point x, the leaf through x is a p-dimensional
manifold and the induced structure comes from a volume form. At a point where � vanishes,
the leaf is the point itself and the induced structure is trivial.

The following theorem gives an equivalent condition which is applicable to all forms, not
only exterior products of exact one-forms.

Theorem 2.2. A p-vector � becomes a Nambu–Poisson structure of order p if

L�(α)� = (−1)p(�(dα))� (2)

for any (p − 1)-form α. Conversely, a Nambu–Poisson structure of order p which we assume
to be decomposable when p = 2 satisfies the condition above.

Proof. Suppose that� satisfies the condition (1). At a regular point, since� is decomposable,
we have

L�(gα)� = LgXf1 ...fp−1
�

= gLXf1 ...fp−1
� − Xf1...fp−1 ∧ �(dg)

= (−1)p(�(dg ∧ df1 ∧ · · · ∧ dfp−1))�

= (−1)p(�(d(gα)))�

for any α = df1 ∧ · · · ∧ dfp−1 and function g. At a point where � = 0, by a computation
similar to that above, we have L�(gα)� = gLXf1 ...fp−1

� − Xf1...fp−1 ∧ �(dg) = 0 for any
α = df1 ∧ · · · ∧ dfp−1 and g, and simultaneously (−1)p(�(dα))� = 0. �
Corollary 2.3. A p-vector � becomes a Nambu–Poisson structure of order p if and only if

L�(α)� = (−1)p
(
(�(dα))� − 1

p
(� ∧ �)(dα)

)
for any (p − 1)-form α.
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Proof. For p = 2, this holds since 2[�(α),�] = 2(�(dα))� − (� ∧ �)(dα). For p � 3,
it follows from the decomposability of �. �

The condition (2) is more easily dealt with than (1). For example:

Proposition 2.4. A p-vector � satisfying (2) is decomposable around a regular point.

Proof. We do this by induction: suppose p = 2 and

� =
∑
i<j

cij
∂

∂xi
∧ ∂

∂xj

locally. We may assume c12 �= 0. Since

L�(fα)� = fL�(α)� − �(α) ∧ �(df )

= (−1)pf (�(dα))� − �(α) ∧ �(df ) (3)

for any (p − 1)-form α and function f , we have

(−1)pc12 � = L�(x1dx2)� = �(dx1) ∧ �(dx2).

Now consider the case p � 3. We may take a function f and a closed (p − 1)-form α such
that �(df ∧ α) �= 0. Then, again by (3), we have

(−1)p�(df ∧ α)� = L�(fα)�

= −�(α) ∧ �(df ).

It is easily checked that the (p − 1)-vector �(df ) satisfies (2), thus � is decomposable. �

2.2. Leibniz algebroids

A Leibniz algebra is a vector space V endowed with a bilinear map [[, ]] : V × V → V

satisfying the Leibniz identity

[[a1, [[a2, a3]]]] = [[[[a1, a2]], a3]] + [[a2, [[a1, a3]]]]

for a1, a2, a3 ∈ V . The map [[, ]] is called the Leibniz bracket or the Leibniz algebra structure
on V . Note that if [[, ]] is skew symmetric, then the Leibniz identity is the Jacobi identity and
(V , [[, ]]) is a Lie algebra.

The Leibniz algebroid is defined in the same way by generalizing the notion of the Lie
algebroid.

Definition 2.5 ([10]). The Leibniz algebroid is a smooth vector bundle � : A → P with a
Leibniz algebra structure [[, ]] on �(A) and a bundle map ρ : A → T P , called an anchor,
such that the induced map ρ : �(A) → �(T P ) satisfies the following properties:

(i) (Leibniz algebra homomorphism)

ρ([[x, y]]) = [ρ (x), ρ (y)]

(ii) (derivation law)

[[x, fy]] = ((ρ (x))f ) y + f [[x, y]]

for all x, y ∈ �(A) and f ∈ C∞(P ).

As in the case of a Lie algebroid, a Leibniz algebroid generates a singular foliation.

Theorem 2.6. Let (A, [[, ]], ρ) be a Leibniz algebroid over P . Then ρ (A) is a integrable
distribution.
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Proof. Let e1, . . . , en be the local basis of �(A). Then we have

[[ei, ej ]] =
n∑

k=1

ckij ek

for some ckij ∈ C∞(P ). Since ρ (e1), . . . , ρ (en) is a local generator of ρ (A), it follows that

[ρ (ei), ρ (ej )] = ρ ([[ei, ej ]]) =
n∑

k=1

ckij ρ (ek).

Therefore, ρ (A) satisfies the integrability condition of Sussmann [17]. �

For any Poisson manifold (P, π), the cotangent bundleT ∗P has the Lie algebroid structure
whose anchor is the Poisson bundle map π : T ∗P → T P and whose bracket is given by

[α, β] = Lπ(α)β − Lπ(β)α − d(π(α, β)) (4)

(see [19]). Similarly, a Nambu–Poisson manifold of order p � 3 has an associated Leibniz
algebroid.

Theorem 2.7 ([10]). Let (P,�)be a Nambu–Poisson manifold of orderp for which we assume
� is decomposable when p = 2. Then the triple (

∧p−1
T ∗P, [[, ]],�) is a Leibniz algebroid

over P , where � :
∧p−1

T ∗P → T P and the bracket [[, ]] is defined by

[[α, β]] = L�(α)β + (−1)p (�(dα)) β (5)

for α, β ∈ �(
∧p−1

T ∗P).

Proof. As this is proved in [10], we give a computational proof using (2). It is easy to see
that �([[α, β]]) = [�(α),�(β)] and [[α, fβ]] = ((�(α))f ) β + f [[α, β]]. Now we prove the
Leibniz identity. We calculate

[[α, [[β, γ ]]]] = L�(α)(L�(β)γ + (−1)p(�(dβ)) γ )

+ (−1)p(�(dα)) (L�(β)γ + (−1)p(�(dβ)) γ )

= L�(α)L�(β)γ + (−1)p(L�(α)(�(dβ)) ) γ + (−1)p(�(dβ))L�(α)γ

+ (−1)p(�(dα))L�(β)γ + (�(dα))(�(dβ)) γ

[[[[α, β]], γ ]] = L[�(α),�(β)]γ

+ (−1)p(�(L�(α)dβ)) γ + �(d(�(dα)) ∧ β) γ + (�(dα))(�(dβ))γ

= L[�(α),�(β)]γ

+ (−1)p(�(L�(α)dβ)) γ − (−1)p(L�(β)(�(dα))) γ + (�(dα))(�(dβ))γ

= L[�(α),�(β)]γ + (−1)p(L�(α)(�(dβ)) ) γ − (−1)p(L�(β)(�(dα))) γ

[[β, [[α, γ ]]]] = L�(β)L�(α)γ + (−1)p(L�(β)(�(dα)) ) γ + (−1)p(�(dα))L�(β)γ

+ (−1)p(�(dβ))L�(α)γ + (�(dβ))(�(dα)) γ.

Thus we have [[α, [[β, γ ]]]] = [[[[α, β]], γ ]] + [[β, [[α, γ ]]]]. �

Note that (5) does not holds generally for p = 2, that is, Poisson manifolds. In fact, for
decomposable Poisson structures, (5) equals (4).

The converse of the theorem above also holds. Indeed, since the anchor is a Leibniz
algebra homomorphism, we deduce that � satisfies the condition (2).
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2.3. Dirac manifolds

We mainly summarize basic definitions and properties of Dirac manifolds investigated by
Courant [2].

Let V be an n-dimensional vector space. We may define the nondegenerate bilinear forms
called the plus pairing on V ⊕ V ∗ by

〈(X, ω), (Y, µ)〉+ = 1
2 (ω(Y ) + µ(X))

where (X, ω), (Y, µ) ∈ V ⊕ V ∗. A Dirac structure on V is a subspace L of V ⊕ V ∗ which is
maximally isotropic under the plus pairing 〈, 〉+. From the definition, it follows that dimL = n.

Definition 2.8. Let P be a smooth manifold. A smooth subbundle L ⊂ T P ⊕ T ∗P is called
an almost Dirac structure on P if the fibre of L is maximally isotropic under the plus pairing
〈, 〉+ at each point.

We denote the projection from T P ⊕ T ∗P onto the first component by ρ, and that onto
the second component by ρ ′. Moreover, we consider L∩ T P as a subset of either L or T P as
the case may be; similarly for L ∩ T ∗P . In this notation, we have

ker ρ|L = L ∩ T ∗P
ker ρ ′|L = L ∩ T P.

We also consider T P and T ∗P as subbundles of T P ⊕ T ∗P as the case may be.
An almost Dirac structure has the following properties:

Proposition 2.9.

Ann ρ (L) = L ∩ T ∗P
Ann ρ ′(L) = L ∩ T P.

Here Ann ρ(L) is the annihilator of ρ (L) with respect to the natural pairing between T P and
T ∗P .

These are called the characteristic equations of L.

Proposition 2.10. An almost Dirac structure L on P induces a linear map ' : ρ (L) ∧
ρ (L) → R defined by

'(X, Y ) = ω(Y ) = −µ(X)

for any (X, ω), (Y, µ) ∈ L.

The integrability condition of Dirac structures is given as follows: L is called a Dirac
structure on P and (P, L) is said to be a Dirac manifold when �(L) is closed under the
skew-symmetric bracket

[e, e′] = ( [X, Y ], LXµ − LYω + d(ω(Y )) ) (6)

where e = (X, ω), e′ = (Y, µ). The three-tensor TL on L defined by

TL(e ⊗ e′ ⊗ e′′) = 〈[e, e′], e′′〉+

vanishes if and only if L is integrable.

Proposition 2.11. L is integrable if and only if (L, [, ], ρ|L) is a Lie algebroid.

Therefore, if L is integrable then ρ (L) generates a singular foliation. Moreover, by
proposition 2.10, there is a two-form ' on each leaf of the foliation. A direct computation
shows that it is closed on each leaf. Thus we have:
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Theorem 2.12. A Dirac manifold has a singular foliation by presymplectic leaves.

Example 2.13.

(i) Let (P,') be a presymplectic manifold, that is, ' is a closed two-form on P . Then the
graph of ' : T P → T ∗P is a Dirac structure on P . It yields the foliation by one leaf
which is P itself, and the two-form of proposition 2.9 is '.

(ii) Let (P, π) be a Poisson manifold. Then the graph of π : T ∗P → T P is a Dirac structure
on P . The induced two-form is dual to π on leaves, that is, we obtain the leafwise
symplectic foliation. The associated Lie algebroid structure on the cotangent bundle is
isomorphic to that on the Dirac structure.

(iii) Consider the singular Poisson structure on R3 given by

{x, y} = 1

z
, {x, z} = 0, {y, z} = 0

which appears in the problem of guiding centre motion in the plane. We may rewrite this
Poisson structure as the Dirac structure on R3 spanned by(

− ∂

∂x
, z dy

)
,

(
∂

∂y
, z dx

)
, (0, dz)

which has no singularity. Its leaves are the planes z = constant and the induced two-forms
are given by ' = z dx ∧ dy.

(iv) Let (P,),E) be a Jacobi manifold, that is, ) be a bivector field and E be a vector field
such that [),)] = 2E∧) and [E,)] = 0. Denote byXu the Hamiltonian vector field of
u ∈ C∞(P ), that is, Xu = )(du) + uE. Around a point where E �= 0, a Jacobi structure
is locally a Dirac structure spanned by

(Xu1 , du1), . . . , (Xun−1 , dun−1), (E, 0)

where u1, . . . , un−1 ∈ C∞(P ) such that du1, . . . , dun−1 spans AnnE.

The maximality for the isotropy is not necessarily needed to yield a presymplectic foliation;
we shall discuss this in the framework of Nambu–Dirac structures in the next section.

The Dirac manifold is suitable for the description of a dynamical system with constraints.
It is known that an almost symplectic manifold (P,') endowed with a regular foliation such
that the pull-back of ' to each leaf is symplectic has an induced Poisson structure, whose
bracket is called the Dirac bracket. The following theorem is its generalization.

Theorem 2.14. Let P be a manifold endowed with a two-form ' and a regular foliation S

such that the pull-back '′ of ' to each leaf is closed on it. Then S induces a Dirac structure
on P .

Proof. Let

L = {(X, ω) ∈ T P ⊕ T ∗P |X ∈ S and ω|S = '′(X)}.
It follows that 〈L,L〉+ = 0 and

dimLx = dim ρ (L)x + dim ker ρ (L)x
= dim Sx + dim(L ∩ T ∗P)x
= dim Sx + dim Ann Sx
= n

for any x ∈ P . The smoothness of L follows from the regularity of S. The integrability holds
since ' is closed. �
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We remark that, as in the case of Poisson manifolds, a singular foliation endowed with a
closed two-form does not always yield a Dirac structure.

Now let us consider a dynamical system with constraints on some phase space. Generally,
a submanifold of a symplectic manifold is presymplectic. Thus if considered constraints on
the phase space give a regular foliation, which always holds locally, then it induces a Dirac
structure on the phase space by the theorem above, and it determines equations of motion under
the constraints. We obtain the Dirac bracket when constraints are all second class. See [7]
for how presymplectic structures on a constraint submanifold describe the Dirac theory of
constraints.

3. Nambu–Dirac manifolds

3.1. Almost Nambu–Dirac structures

Let P be an n-dimensional smooth manifold. We put T1 = T P ⊕ ∧p−1
T ∗P , Tp−1 =∧p−1

T P ⊕ T ∗P where 2 � p � n and N = dim T1(x) = dim Tp−1(x) where x ∈ P . We
have two natural pairings between T1 and Tp−1, namely, bilinear maps from T1 × Tp−1 to R
defined by

〈(X,ω), (Y , µ)〉+ = 1
2 (ω(Y ) + (−1)pµ(X))

〈(X,ω), (Y , µ)〉− = 1
2 (ω(Y ) − (−1)pµ(X))

for all (X,ω) ∈ T1, (Y , µ) ∈ Tp−1. Let us denote both projections from T1, Tp−1 onto the
first components by the same letter ρ, and those onto the second components by ρ ′.

Definition 3.1. A smooth subbundle L ⊂ T1 is said to be an almost Nambu–Dirac structure
of order p on P if

(ω(X′) + ω′(X))|∧p−2
ρ (L) = 0 (7)

for any (X,ω), (X′,ω′) ∈ L and
p−1∧

ρ (L) = ρ (L⊥) (8)

where L⊥ denotes the annihilator of L with respect to the plus pairing 〈, 〉+.

The condition (7) is equivalent to the requirement that (X ∧ Z,ω(Z)) ∈ L⊥ for any
(X,ω) ∈ L and Z ∈ ∧p−2

ρ (L). Note that this implies
∧p−1

ρ (L) ⊂ ρ (L⊥). We also
remark dimL(x) + dimL⊥(x) = N where x ∈ P .

By definition, it follows that

ker ρ|L = L ∩
p−1∧

T ∗P ker ρ|L⊥ = L⊥ ∩ T ∗P

ker ρ ′|L = L ∩ T P ker ρ ′|L⊥ = L⊥ ∩
p−1∧

T P.

Note that we consider L ∩ T P as a subset of either L or T P as the case may be; similarly for
L ∩∧p−1

T ∗P,L⊥ ∩ T ∗P and L⊥ ∩∧p−1
T P . We also consider T1, Tp−1 as subbundles of

T1 ⊕ Tp−1 as the case may be.

Example 3.2.

(i) Let P be a manifold and ' a closed p-form on P . Consider the graph of ' : T P →∧p−1
T ∗P

L = {(X,'(X)) ∈ T1 |X ∈ T P } .
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Then we have

L⊥ =
{
(Y , '(Y )) ∈ Tp−1|Y ∈

p−1∧
T P

}
and it follows that L is an almost Nambu–Dirac structure of order p. Conversely, if an
almost Nambu–Dirac structure onP is given by the graph of a mapA : T P → ∧p−1

T ∗P ,
then a p-form ' is defined by '(X ∧ Y ) = A(X,Y ).

(ii) Let (P,�) be a Nambu–Poisson manifold of order p � 3. Consider the graph of �

L =
{
(�(ω),ω) ∈ T1|ω ∈

p−1∧
T ∗P

}
.

We see that L is an almost Nambu–Dirac structure of order p. Indeed, let X1, . . . , Xn

be the vector fields which span T P and � = X1 ∧ · · ·Xp locally. Then we deduce
ω(�(ω′) ∧ Xij ) + ω′(�(ω) ∧ Xij ) = 0 for any Xij = X1 ∧ · · · X̂i · · · X̂j · · · ∧ Xp. As
ρ (L) is spanned by X1, . . . , Xp, we have (7) of definition 3.1. Furthermore, since

L⊥ = {
(�(µ), µ) ∈ Tp−1 |µ ∈ T ∗P

}
and � is decomposable, the condition (8) of definition 3.1 holds.
Conversely, if an almost Nambu–Dirac structure on P is given by the graph of a map
B :

∧p−1
T ∗P → T P , a p-vector � is defined by �(ω, µ) = B(ω, µ). Moreover,

since L⊥ is equal to the graph of (−1)p−1 B∗, by (8) we obtain rank B = p, that is, � is
decomposable.

(iii) Any Dirac structure is an almost Nambu–Dirac structure of order 2. Conversely, suppose
that (P, L) is an almost Nambu–Dirac structure of order 2. The condition (7) is equivalent
to the requirement thatL is isotropic under 〈, 〉+. AssumeL ⊂ L⊥. For anyω ∈ L⊥∩T ∗P
we have

〈(0, ω), L⊥〉+ = 〈ω|ρ (L⊥)〉 = 〈ω|ρ (L)〉 = 〈L, (0, ω)〉+ = 0

thus we haveL⊥ ∩ T ∗P ⊂ L∩ T ∗P . This andL ⊂ L⊥ imply thatL∩ T ∗P = L⊥ ∩ T ∗P .
Therefore,

dimL = dim ρ (L) + dim ker ρ|L
= dim ρ (L⊥) + dim ker ρ|L⊥

= dimL⊥

and it follows that dimL = n. Thus L is a Dirac structure on P .

In the above examples, there are the integrability conditions, namely, the Jacobi identity,
the fundamental identity and the vanishing of the integrability tensor. We shall consider the
integrability condition of an almost Nambu–Dirac structure later.

Proposition 2.9 is generalized as follows:

Proposition 3.3. The following equations hold.

Ann ρ (L⊥) = L ∩
p−1∧

T ∗P Ann ρ (L) = L⊥ ∩ T ∗P (9)

Ann ρ ′(L⊥) = L ∩ T P Ann ρ ′(L) = L⊥ ∩
p−1∧

T P. (10)
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Proof. We prove (10). Since 〈ρ ′(L⊥) |L ∩ T P 〉 = 〈L ∩ T P,L⊥〉+ = 0, we have
ρ ′(L⊥) ⊂ Ann(L ∩ T P ). Similarly, we have ρ ′(L) ⊂ Ann

(
L⊥ ∩ ∧p−1

T ∗P
)
. Thus at

each point it follows that

dimL − dim ker ρ ′|L = dim ρ ′(L)

� dim Ann
(
L⊥ ∩

p−1∧
T ∗P

)
= dim

p−1∧
T ∗P − dim ker ρ ′|L⊥

dimL⊥ − dim ker ρ ′|L⊥ = dim ρ ′(L⊥)
� dim Ann

(
L ∩ T ∗P

)
= dim T ∗P − dim ker ρ ′|L.

The sum of the leftmost sides of the two inequalities is equal to that of their rightmost sides of
them. Thus we have the equations (10). In the same way, we obtain the equations (9). �
We call (9) and (10) the characteristic equations of L. Since these equations hold, we
can obtain a linear map ' :

∧p
ρ (L) → R as follows: define '̃ : ρ (L) → ρ (L⊥)∗

and ˜̃
' : ρ (L⊥) → ρ (L)∗ by '̃(ρ (e1)) = ρ ′(e1)|ρ (L⊥) and ˜̃

'(ρ (ep−1)) = ρ ′(ep−1)|ρ (L)
respectively; if e1, e

′
1 ∈ L satisfies ρ (e1) = ρ (e′

1), then e1 − e′
1 ∈ ker ρ|L = Ann ρ (L⊥),

and accordingly ρ ′(e1 − e′
1)|ρ (L⊥) = 0, which means that '̃ is well defined. We may consider

'̃ : ρ (L)×ρ (L⊥) → R. Similarly for ˜̃
'. Clearly it holds that '̃(X,Y ) = (−1)p−1 ˜̃

'(Y , X)

for X ∈ ρ (L),Y ∈ ρ (L⊥). Furthermore,

'̃(X,X′ ∧ Z) = ω(X′ ∧ Z) = −ω′(X ∧ Z) = − ˜̃
'(X′, X ∧ Z)

for any (X,ω), (X′,ω′) ∈ L and Z ∈ ∧p−2
ρ (L). Hence we obtain ' :

∧p
ρ (L) → R by

'(X ∧ Y ) = '̃(X,Y ).
Thus we obtain the following:

Proposition 3.4. An almost Nambu–Dirac structureL induces a linear map' :
∧p

ρ (L) → R.

In fact, in the whole discussion above, the condition (8) is not necessarily needed. Indeed,
since

∧p−1
ρ (L) ⊂ ρ (L⊥), we obtain ' :

∧p
ρ (L) → R by restricting '̃ to

∧p
ρ (L).

We call such a structure L an almost generalized Nambu–Dirac structure. Every isotropic
subbundle of T P ⊕ T ∗P is an almost generalized Nambu–Dirac structure of order 2, and vice
versa.

The following proposition does not hold for generalized Nambu–Dirac structures in
general.

Proposition 3.5. Let L be an almost Nambu–Dirac structure of order p and consider

ker' = {X ∈ ρ (L) |'(X) = 0}

kerp−1 ' =
{
Y ∈

p−1∧
ρ (L)

∣∣'(Y ) = 0

}
.

Then it follows that ker' = L ∩ T P and kerp−1 ' = L⊥ ∩∧p−1
T P .

Proof. Since ρ ′(L ∩ T P ) = 0, we have L ∩ T P ⊂ ker'. Conversely, take e1 ∈ L

such that '(ρ (e1)) = 0. Since ρ (e1)|ρ ′(L⊥) = ρ ′(e1)|ρ (L⊥) = 0, we have ker' ⊂
Ann ρ ′(L⊥) = L ∩ T P . Thus we have ker' = L ∩ T P . In the same way, we have
kerp−1 ' = L⊥ ∩∧p−1

T P . �
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Example 3.6. LetL be a generalized Nambu–Dirac structure of order 3 on R3 spanned at each
point by (

∂

∂x1
, dx2 ∧ dx3

)
where (x1, x2, x3) are the standard coordinates. Since ρ (L) is spanned by ∂/∂x1 and the
induced structure ' = 0, we deduce ker' �= 0, while L ∩ T P = 0. Similarly, since L⊥ is
spanned by(

∂

∂x2
∧ ∂

∂x3
, dx1

)
,

(
∂

∂x1
∧ ∂

∂x2
, 0

)
,

(
∂

∂x3
∧ ∂

∂x1
, 0

)
, (0, dx2), (0, dx3)

we also obtain kerp−1 ' �= L⊥ ∩∧p−1
T P .

However, generalized Nambu–Dirac structures also have some of the geometric properties
which Nambu–Dirac structures do.

3.2. Integrability of Nambu–Dirac structures

We define a bilinear bracket on sections of T1 by

[[e, e′]] = ( [X, Y ], LXµ − ιY dω) (11)

for e = (X,ω), e′ = (Y,µ) ∈ �(T1).

Definition 3.7. Let L ⊂ T1 be an almost Nambu–Dirac structure of order p. L is called a
Nambu–Dirac structure, or an integrable Nambu–Dirac bundle, if �(L) is closed under the
bracket [[, ]]. We call (P, L) a Nambu–Dirac manifold of order p.

Note that LXµ − ιY dω = LXµ − LYω + d(ω(Y )), thus this is a natural generalization
of (6). As in the Dirac case, we shall introduce the integrability tensor of L.

Definition 3.8. Let L ⊂ T1 be an almost Nambu–Dirac structure of order p. We define
TL : L ⊗ L ⊗ L⊥ → R by

TL(e, e
′, e′′) = 〈[[e, e′]], e′′〉+

where e, e′ ∈ �(L) and e′′ ∈ �(L⊥).

We shall check that TL is a tensor. For any e = (X,ω), e′ = (Y,µ) ∈ �(L), e′′ ∈ �(L⊥)
and f ∈ C∞(P ), it follows that

〈[[e, f e′]], e′′〉+ = 〈 ( [X, f Y ], LX(fµ) − ιf Y dω ), e′′ 〉+

= 〈 ( (Xf )Y + f [X, Y ], (Xf )µ + fLXµ − f ιY dω ), e′′ 〉+

= 〈 ( (Xf )Y, (Xf )µ ), e′′ 〉+ + f 〈[[e, e′]], e′′〉+

= f 〈[[e, e′]], e′′〉+

〈[[f e, e′]], e′′〉+ = 〈 ( [fX, Y ], LfXµ − ιY d(fω) ), e′′ 〉+

= f 〈[[e, e′]], e′′〉+

+ 〈 (−(Yf )X, df ∧ µ(X) − (Yf )ω + df ∧ ω(Y ) ), e′′ 〉+

= f 〈[[e, e′]], e′′〉+ − 〈(Yf )e, e′′〉+ + 〈 ( 0, df ∧ (µ(X) + ω(Y )) ), e′′ 〉+

= f 〈[[e, e′]], e′′〉+.

Therefore,

TL(e, f e
′, e′′) = TL(e, e

′, f e′′) = f TL(e, e
′, e′′).

Obviously TL(e, e
′, f e′′) = f TL(e, e

′, e′′), thus TL is a three-tensor.
In the computation above we have shown:
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Proposition 3.9. For e = (X,ω), e′ = (Y,µ) ∈ �(L) and f ∈ C∞(P ),

[[e, f e′]] = f [[e, e′]] + ((ρ (e))f ) e′

[[f e, e′]] = f [[e, e′]] − (Yf ) e + ( 0, df ∧ (µ(X) + ω(Y )) ).

We call TL the integrability tensor of L since:

Proposition 3.10. L is a Nambu–Dirac structure if and only if TL = 0.

Proof. This follows from the definition of TL. �
Now we shall see that a Nambu–Dirac structure has an associated Leibniz algebroid, as a

Dirac structure has an associated Lie algebroid.

Theorem 3.11. An almost Nambu–Dirac structure L is integrable if and only if (L, [[, ]], ρ|L)
is a Leibniz algebroid.

Proof. As we have already shown in proposition 3.9 that the bracket [[, ]] has the derivation
property, the assertion holds only if L satisfies the Leibniz identity. Since

ρ ′([[e, [[e′, e′′]]]]) = LX(LY ζ − ιZ dµ) − ι[Y,Z] dω

= LXLY ζ − (LX dµ)(Z) − dµ(LXZ) − dω(LYZ)

ρ ′([[[[e, e′]], e′′]]) = L[X,Y ]ζ − ιZ d(LXµ − ιY dω)

= L[X,Y ]ζ − (LX dµ)(Z) + (LY dω)(Z)

ρ ′([[e′, [[e, e′′]]]]) = LYLXζ − (LY dω)(Z) − dω(LYZ) − dµ(LXZ)

for e = (X,ω), e′ = (Y,µ), e′′ = (Z, ζ) ∈ �(L), we have

ρ ′([[e, [[e′, e′′]]]]) = ρ ′([[[[e, e′]], e′′]]) + ρ ′([[e′, [[e, e′′]]]]).

It is obvious that

ρ([[e, [[e′, e′′]]]]) = ρ([[[[e, e′]], e′′]]) + ρ([[e′, [[e, e′′]]]]).

Therefore, the Leibniz identity holds. �
By theorem 2.6, we have a singular foliation of a Nambu–Dirac manifold (P, L). In

addition, the leaves are endowed with a p-form ' by proposition 3.4. Let us examine this
induced structure on leaves.

Lemma 3.12. Let ιL : L ⊕ L⊥ → T1 ⊕ Tp−1 be the inclusion and ρL : L ⊕ L⊥ →
T P ⊕∧p−1

T P be the projection. Then it follows that ρ∗
L'̃ = ι∗L(〈, 〉−).

Proof. ρ∗
L'̃(e1, ep−1) = '̃(X,Y ) = 〈e1, ep−1〉− = ι∗L(〈e1, ep−1〉−) for any e1 = (X,ω) ∈

L, e′
1 = (Y , µ) ∈ L⊥. �
This lemma ensures that ' is smooth. Now we compute d'. Suppose that e1 =

(X,ω), e′
1 = (Y,µ) ∈ L and ep−1 = (Z, ζ ) ∈ L⊥ so that Z ∈ ∧p−1

ρ (L). Considering
T1, Tp−1 ⊂ T1 ⊕ Tp−1, we have

ρ∗
Ld'(e1, e

′
1, ep−1) = d'(X, Y,Z)

= (ιX d')(Y,Z)

= (LX')(Y,Z) − dω(Y,Z)

= X('(Y,Z)) − '(LXY,Z) − '(Y,LXZ) − dω(Y,Z)

= 2〈[[e1, e
′
1]], ep−1〉+. (12)

Therefore, d' is closed if and only if TL vanishes. Thus we have shown:
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Theorem 3.13. A Nambu–Dirac manifold has a singular foliation whose leaves are endowed
with a closed p-form.

Note that on a leaf whose dimension is less than p, the induced structure is automatically
trivial. We also remark that (integrable) generalized Nambu–Dirac structures are defined in
the same way and they also have foliations endowed with closed forms.

As theorem 2.14, we have the following:

Theorem 3.14. Let P be a manifold endowed with a p-form ' and a regular foliation S such
that the pull-back'′ of' to each leaf is closed on it. Then S induces a Nambu–Dirac structure
on P .
Proof. Let

L = {(X,ω) ∈ T1 |X ∈ S and ω|S = '′(X)}.
As in the Dirac case, it is proved that L is a Nambu–Dirac structure on P . �

In fact, if and only if L is integrable, L ⊕ L⊥ has a Leibniz algebroid structure whose
anchor is the projection to T P and whose bracket is

{e, e′} = ( ([X, Y ], LXµ − ιY dω), ([X,Y ], LXµ − ιY dω) )

for any e = ((X,ω), (X, ω)), e′ = ((Y,µ), (Y , µ)) ∈ L ⊕ L⊥. Indeed, the derivation law
and the Leibniz identity hold as well as L. The closedness under the bracket holds because
under the notation e = (e1, ep−1) ∈ L ⊕ L⊥ it follows that {e, e′}1 = [[e1, e

′
1]] and, by the

equation (12),

2〈[[e1, e
′
1]], e′′

p−1〉+ = d'(X, Y,Z)

= (−1)p (LY')(Z, X) − (−1)p dµ(Z, X)

= (−1)p Y ('(Z, X)) − (−1)p '(Z,LYX) + '(X,LYZ)

−(−1)p dµ(Z, X)

= (−1)p Y (ζ(X)) − (−1)p ζ(LYX) + ω(LYZ) − (−1)p (ιZ dµ)(X)

= (−1)p (LY ζ − ιZ dµ)(X) + ω(LYZ)

= 2〈e1, {e′, e′′}p−1〉+

for any e = ((X,ω), (X, ω)), e′ = ((Y,µ), (Y , µ)), e′′ = ((Z, ζ), (Z, ζ )) ∈ L⊕L⊥. Note
that this induces the same foliation and structure on leaves as L does.

3.3. Infinitesimal Nambu–Dirac automorphisms

Let (P, L) be a Nambu–Dirac manifold of order p and (X,ω), (Y,µ) ∈ �(L). We define
LX(Y,µ) = (LXY,LXµ). Since

[[(X,ω), (Y,µ)]] = ([X, Y ],LXµ − ιY dω)

= LX(Y,µ) − (0, ιY dω)

we have

〈LX(Y,µ), (Z, ζ )〉+ = 〈[[(X,ω), (Y,µ)]], (Z, ζ )〉+ + 〈(0, ιY dω), (Z, ζ )〉+

= 1
2 dω(Y,Z)

for any (Z, ζ ) ∈ �(L⊥). Therefore, LXL ⊂ L if and only if dω|∧p
ρ (L) = 0.

Now we consider the invariance of the induced structure ' on each leaf under flows.

Theorem 3.15. If (X,ω) is a section of L, we have LX' = dω|∧p
ρ (L).

Proof. Since ' is closed on each leaf, we have LX' = dιX'. �
Thus we deduce that LXL ⊂ L if and only if LX' = 0.
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3.4. The admissible functions

A function f on a Dirac manifold (P, L) is said to be admissible if df is a section of ρ ′(L).
The set of admissible functions Adm(P ) naturally forms a Poisson algebra (see [2]).

Now we discuss the functions on a Nambu–Dirac manifold (P, L) of order p. We call L
a strong Nambu–Dirac structure when it holds that

(X(µ) + Y (ω))|∧p−2
ρ ′(L⊥) = 0 (13)

for any (X, ω), (Y , µ) ∈ L⊥. Clearly, as well as (7) this implies
∧p−1

ρ ′(L⊥) ⊂ ρ ′(L). Dirac
manifolds, Nambu–Poisson manifolds, multisymplectic manifolds of dimensional order and
manifolds endowed with decomposable closedp-forms are all strong Nambu–Dirac manifolds.
Note that (13) is independent of (8) for p � 3.

Example 3.16 (Generalized strong Nambu–Dirac structure). Let (x1, x2, x3, x4) be stan-
dard coordinates on R4. The subbundle L ⊂ TR4 ⊕∧3

T ∗R4 spanned at each point by(
∂

∂x1
, 0

)
, (0, dx2 ∧ dx3 ∧ dx4) , (0, dx1 ∧ dx3 ∧ dx4) , (0, dx1 ∧ dx2 ∧ dx4)

is a generalized strong Nambu–Dirac structure of order 4. Indeed, L⊥ is spanned by(
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
, 0

)
, (0, dx2), (0, dx3), (0, dx4).

A function f on a strong Nambu–Dirac manifold (P, L) is said to be admissible if df
is a section of ρ ′(L⊥). We denote by Adm(P ) the set of admissible functions on P . By an
argument similar to that in proposition 3.4, we have a linear map � :

∧p
ρ ′(L) → R. Thus

we may define a skew p-bracket on Adm(P ) by

{f1, . . . , fp} = �(df1 ∧ · · · ∧ dfp).

For f1, . . . , fp ∈ Adm(P ), there exists a vector field Xf1...fp−1 and a (p − 1)-vector field Xfp

such that ef1...fp−1 = (Xf1...fp−1 , df1 ∧ · · · ∧ dfp−1) is a section of L and efp = (Xfp , dfp) is a
section of L⊥. We remark that Xf1...fp−1 and Xfp are not uniquely determined in general.

Lemma 3.17. { . . . } satisfies the derivation law.

Proof. For any g, h ∈ Adm(P ), take Xg,Xh ∈ ρ (�(L⊥)) and define Xgh = gXh + hXg .
Then we have (Xgh, d(gh)) = geh + heg ∈ �(L⊥), which implies that gh is admissible. It is
obvious that

{f1, . . . , fp−1, gh} = {f1, . . . , fp−1, g}h + g{f1, . . . , fp−1, h}
for any f1, . . . , fp−1 ∈ Adm(P ). �

Lemma 3.18. { . . . } satisfies the fundamental identity.

Proof. Let f1, . . . , fp−1, g1, . . . , gp−1, h be admissible functions on P and take ef1...fp−1 ,

eg1...gp−1 ∈ �(L). Since

[[ef1...fp−1 , eg1...gp−1 ]] = (
[Xf1...fp−1 , Xg1...gp−1 ],LXf1 ...fp−1

(dg1 ∧ · · · ∧ dgp−1)
)

and

LXf1 ...fp−1
(dg1 ∧ · · · ∧ dgp−1) =

p∑
i=1

dg1 ∧ · · · ∧ d{f1, . . . , fp−1, gi} ∧ · · · ∧ dgp−1
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we have

0 = 〈[[ef1...fp−1 , eg1...gp−1 ]], eh〉+

=
( p∑

i=1

dg1 ∧ · · · ∧ d{f1, . . . , fp−1, gi} ∧ · · · ∧ dgp−1

)
(Xh)

+ (−1)p
[
Xf1...fp−1 , Xg1...gp−1

]
h

= (−1)p−1
p−1∑
i=1

{g1, . . . , {f1, . . . , fp−1, gi}, . . . , gp−1, h}

+ (−1)p
[
Xf1...fp−1 , Xg1...gp−1

]
h.

This implies

[
Xf1...fp−1 , Xg1...gp−1

]
h =

p−1∑
i=1

{g1, . . . , {f1, . . . , fp−1, gi}, . . . , gp−1, h}

hence the fundamental identity holds. �

Thus we have shown:

Theorem 3.19. The set of admissible functions Adm(P ) on a strong Nambu–Dirac manifold
(P, L) naturally has a Nambu–Poisson bracket.

On a strong Nambu–Dirac manifold (P, L), flows along leaves which keep L invariant
are given by admissible functions, that is:

Theorem 3.20. Let (P, L) be a strong Nambu–Dirac manifold of order p. Then L is locally
invariant under Xf1...fp−1 where f1, . . . , fp−1 are admissible functions.

Proof. This follows from d(df1 ∧ · · · ∧ dfp−1) = 0. �

Now, let us consider the characteristic distribution of the induced p-form ' on each leaf
of P , that is, ker' = L ∩ T P .

Theorem 3.21. Let (P, L) be a Nambu–Dirac manifold. If L ∩ T P is a bundle, it generates
a regular foliation 4.

This theorem results from the following general lemma:

Lemma 3.22. Let M be a manifold and ' a closed p-form on M . If char' = {X ∈
TM |'(X) = 0} is a bundle, it is involutive.

This is a generalization of the Dirac case. On a Dirac manifold, in addition, P/4 inherits
a Poisson structure naturally, which can be generalized to strong Nambu–Dirac manifolds:

Theorem 3.23. Let (P, L) be a strong Nambu–Dirac manifold and L ∩ T P a bundle. Then
P/4 inherits a Nambu–Poisson bracket from Adm(P ).

Proof. We may regard functions on the manifold P/4 as functions constant on 4, that is, all
f ∈ C∞(P ) satisfying df |L∩T P = 0. By the characteristic equation Ann ρ ′(L⊥) = L ∩ T P ,
such functions are the admissible functions on P . �
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4. Applications

We give some examples obtained from multisymplectic, Nambu–Poisson and Nambu–Jacobi
structures. We also give an alternative Leibniz algebroid structure on the bundle of (p − 1)-
forms on a Nambu–Poisson manifold.

4.1. Nambu–Dirac structures induced from multisymplectic manifolds

A multisymplectic structure of order p on a manifold P , in the sense of [1], is a closed and
nondegenerate p-form, where a p-form ' is said to be nondegenerate when ' : T P →∧p−1

T ∗P is injective. For p = 2, we rediscover a symplectic structure. It is obvious
that multisymplectic manifolds and submanifolds of them are Nambu–Dirac manifolds of
which foliations consist of one leaf. For example, quaternionic Kähler manifolds and their
submanifolds are Nambu–Dirac manifolds.

In [1], the authors shows that for an arbitrary manifold P , the bundle
∧p−1

T ∗P of
(p − 1)-forms has the canonical multisymplectic structure of order p locally represented by

'can =
∑

1�i1�···�ip−1�n

dyi1···ip−1 ∧ dxi1 ∧ · · · ∧ dxip−1

where (xi, yi1...ip−1) are the local coordinates of
∧p−1

T ∗P . Therefore, a bundle of (p − 1)-
forms on an arbitrary manifold and its subbundles are all Nambu–Dirac manifolds of order p.
Furthermore, consider a bundle of (p − 1)-forms on a multisymplectic manifold (P,'). The
image of' : T P → ∧p−1

T ∗P is endowed with a closedp-form as a Nambu–Dirac structure.
Thus we deduce that the tangent bundle of a multisymplectic manifold has a Nambu–Dirac
structure induced from '.

Finally, we remark that a Nambu–Dirac manifold (P, L) satisfying L ∩ T P = 0 has a
foliation by multisymplectic leaves. While the induced leaves of a Nambu–Poisson structure
have symplectic forms or volume forms, both of which are examples of multisymplectic
structure, this gives a more general kind of leafwise multisymplectic foliation.

4.2. Nambu–Poisson manifolds and associated Leibniz algebroids

Now we shall discuss the Nambu–Dirac structures of Nambu–Poisson manifolds. Let (P,�)

be a Nambu–Poisson manifold of order p andL its Nambu–Dirac structure; in example 3.2 (ii)
we see that L is defined by the graph of � :

∧p−1
T ∗P → T P , whose integrability follows

from the fundamental identity via a computation using lemma 3.18. For p � 3, it follows
from proposition 3.3 and theorem 2.1 that

dim ρ (L) = dim T P − dim Ann ρ (L)

= n − dim(L⊥ ∩ T ∗P)
= n − dim ker�

=
{
p (�(x) �= 0)

0 (�(x) = 0)

at each point x ∈ P . Therefore, a leaf through a regular point is a p-dimensional submanifold
endowed with the induced volume form ', whereas at a singular point the leaf is the point
itself and the induced structure is trivial. Namely, we rediscover the induced foliation of a
Nambu–Poisson manifold. For p = 2, the graph becomes a Dirac structure and we obtain the
usual leafwise symplectic foliation of a Poisson manifold.
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The pull-back of the Leibniz algebroid structure on L by the isomorphism (ρ ′|L)−1 gives∧p−1
T ∗P a Leibniz algebroid structure, whose anchor is � :

∧p−1
T ∗P → T P and whose

bracket is

[[α, β]] = L�(α)β − ι�(β) dα. (14)

This Leibniz algebroid structure disagrees with that given by theorem 2.7 since the Leibniz
algebra structures (14) and (5) are different. The former is a natural generalization of Lie
algebroid structures associated with Poisson manifolds, because (4) may be written in this
form. It includes the case p = 2 naturally, while the latter does only if the Poisson structure
is decomposable. In addition to the decomposable Poisson case, the two structures coincide if
� is originates from a volume form. We also deduce that

∧p−1
T ∗P ⊕ T ∗P has the Leibniz

algebroid structure with the anchor ρ (ω, ω) = �(ω) and the bracket

[[(ω, ω), (µ, µ)]] = (L�(ω)µ − ι�(µ) dω, L�(ω)µ − ι�(µ) dω).

A Nambu–Poisson structure with singularity can be regarded as a Nambu–Dirac structure
without singularity. For example, consider a singular Nambu–Poisson structure on P = Rp+1

� = 1

xp+1

∂

∂x1
∧ · · · ∧ ∂

∂xp

which is singular at xp+1 = 0. Let L be a subbundle of T1 spanned by(
∂

∂xi
, (−1)p−ixp+1 dx1 ∧ · · · d̂xi · · · ∧ dxp

)
, (0, dx1 ∧ · · · d̂xi . . . d̂xj · · · ∧ dxp)

where 1 � i, j � p. Then L⊥ is spanned by(
∂

∂x1
∧ · · · ∂̂

∂xi
· · · ∧ ∂

∂xp
, (−1)i−1xp+1 dxi

)
, (0, dxp+1)

where 1 � i � p, thus L is a Nambu–Dirac structure of order p; the integrability of L is easily
checked. L is smoothly defined on all Rp+1. The leaves are planes xp+1 = constant, and the
induced p-forms are given by ' = xp+1 dx1 ∧ · · · ∧ dxp.

4.3. Nambu–Jacobi structures at regular points

A Nambu–Jacobi structure of order p � 3 on a manifold P is a pair of a p-vector and a
(p − 1)-vector (�,E) satisfying

L�(dfp−1)� = 0 (15)

LE(dfp−2)E = 0 (16)

LE(dfp−2)� = 0 (17)

L�(dfp−1)E = (−1)p−1 �( d(E(dfp−1)) ) (18)

for any functions f1, . . . , fp−1, where dfp−1 represents df1 ∧ · · · ∧ dfp−1 [14]. We give an
equivalent condition using theorem 2.2:

Proposition 4.1. For p � 3 for which we assume E is decomposable when p = 3, a p-vector
� and a (p − 1)-vector E define a Nambu–Jacobi structure if and only if

L�(α)� = (−1)p(�(dα))� (19)

LE(β)E = (−1)p−1(E(dβ))E (20)

LE(β)� = (−1)p−1(E(dβ))� (21)

L�(α)E = (−1)p(�(dα))E + (−1)p−1 �( d(E(α)) ) (22)

for any (p − 1)-form α and (p − 2)-form β.
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Proof. By theorem 2.2, (15) and (16) are equivalent to (19) and (20) respectively. We shall
show the rest. By an argument similar to that in theorem 2.2, we only have to prove the
proposition at a point where � �= 0. Since ιθ� = E and �(dθ) = 0 for some one-form θ , we
have

LE(β)� = (−1)p−1(�(d(θ ∧ β)))�

= (−1)p−1(�(θ ∧ dβ))�

= (−1)p−1(E(dβ))�,

L�(α)E = L�(α)(�(θ))

= (L�(α)�)θ + �(L�(α)θ)

= (L�(α)�)θ + �(dι�(α)θ + ι�(α)dθ)

= (−1)p(�(dα))�(θ) + (−1)p−1�( d(E(α)) ) + �( dθ(�(α)) )

= (−1)p(�(dα))�(θ) + (−1)p−1�( d(E(α)) ).

�

The associated foliation of a Nambu–Jacobi manifold is as follows:

Theorem 4.2 ([9]). Let (P,�,E) be a Nambu–Jacobi manifold of order p � 3. Then P has
the associated foliation such that

(i) if �(x) �= 0, the leaf through x is a p-dimensional manifold endowed with the Nambu–
Poisson structure of order p coming from �,

(ii) if �(x) = 0 and E �= 0, the leaf through x is a (p − 1)-dimensional manifold,

(a) if p > 3 then the induced structure is the Nambu–Poisson structure of order p − 1
coming from E,

(b) if p = 3 then the induced structure is a symplectic structure coming from the Poisson
structure E,

(iii) if �(x) = 0 and E = 0, the leaf is the point x and the induced structure is trivial.

Now, we shall see that locally, around a regular point, a Nambu–Jacobi structure of order
p � 3 is actually a Nambu–Dirac structure of order p − 1. Suppose that (P,�,E) is a
Nambu–Jacobi manifold of order p � 3. Let us denote the characteristic distributions of �
and E by D� and DE respectively. From regularity, it follows that there exists a non-zero
vector field v such that D� = span v ⊕ DE . Let

L =
(
E

( p−2∧
Ann v

)
,

p−2∧
Ann v

)
⊕
(

0, span v∗ ∧
(

Ann
p−3∧

DE

))
⊕ (span v, 0).

Then

L⊥ = ( E(Ann v),Ann v ) ⊕
(

span v ∧
( p−3∧

DE

)
, 0

)
and it follows that L is a strong Nambu–Dirac structure of order p − 1. Indeed, since
dim AnnDE = n − p + 1, we may take coordinates x1, . . . , xn such that

� = ∂

∂x1
∧ · · · ∧ ∂

∂xp−1
∧ ∂

∂xn
, E = ∂

∂x1
∧ · · · ∧ ∂

∂xp−1
v = ∂

∂xn
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locally. L and L⊥ are spanned by(
XE
xi1 ...xip−2

, dxi1 ∧ · · · ∧ dxip−2

)
, (0, dxn ∧ dxj1 ∧ · · · ∧ dxjp−3), (v, 0)

and (
XE
xi
, dxi

) (
∂

∂xn
∧ ∂

∂xk1

∧ · · · ∧ ∂

∂xkp−3

, 0

)
respectively, where 1 � i1, . . . , ip−2 � n−1, (j1, . . . , jp−3) � (1, . . . , p−1), 1 � i � n−1
and (k1, . . . , kp−3) ⊂ (1, . . . , p − 1). The induced foliation is generated by D�, that is, the
same foliation as that of theorem 4.2. Thus the leaf through a regular point is p-dimensional,
while the induced structure ' is a (p − 1)-form. Furthermore, ker' is spanned by v and
the quotient P/4 where 4 is the characteristic foliation of ' has a Nambu–Poisson bracket
originating from E. This is isomorphic to that of admissible functions

Adm(P ) = {f ∈ C∞(P ) | df ∈ Ann v}.
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[8] Ibáñez R, de León M, Marrero J C and Martı́n de Diego D 1997 Dynamics of generalized Poisson and Nambu–

Poisson brackets J. Math. Phys. 38 2332–44
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